
1
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and Its Variant for Online Setting
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Abstract—With the rapid development of Web 2.0 and Online To Offline (O2O) marketing model, various online event-based social
networks (EBSNs) are getting popular. An important task of EBSNs is to facilitate the most satisfactory event-participant arrangement
for both sides, i.e. events enroll more participants and participants are arranged with personally interesting events. Existing approaches
usually focus on the arrangement of each single event to a set of potential users, or ignore the conflicts between different events, which
leads to infeasible or redundant arrangements. In this paper, to address the shortcomings of existing approaches, we first identify a
more general and useful event-participant arrangement problem, called Global Event-participant Arrangement with Conflict and
Capacity (GEACC) problem, focusing on the conflicts of different events and making event-participant arrangements in a global view.
We find that the GEACC problem is NP-hard due to the conflicts among events. Thus, we design two approximation algorithms with
provable approximation ratios and an exact algorithm with pruning technique to address this problem. In addition, we propose an online
setting of GEACC, called OnlineGEACC, which is also practical in real-world scenarios. We further design an online algorithm with
provable performance guarantee. Finally, we verify the effectiveness and efficiency of the proposed methods through extensive
experiments on real and synthetic datasets.
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1 INTRODUCTION

THE prevalence of Web 2.0 and Online To Offline (O2O)
marketing model has led to the boom of various on-

line event-based social networks (EBSNs) [1]. For example,
Groupon1 collects group purchase events and recommends
these group discounts to users, and Meetup2 receives infor-
mation on recruitment of attendees in offline events, such as
gatherings, sports activities, etc., and sends such informa-
tion to users. Such EBSNs facilitate organizing social events
and ease the recruitment of group activity participants. Note
that “participant” and “user” are used interchangeably in
this paper.

However, most existing EBSNs only provide a pub-
lic/open event information sharing platform [1], where
strategic organization and global event-participant arrange-
ment are absent. Imagine the following scenario. Bob is a
sport enthusiast and usually attends sports activities or-
ganized on Meetup. In a Saturday evening, Bob faces a
dilemma since Meetup recommends him three conflicting
sport activities on Sunday: a hiking trip from 8:00 a.m.
to 12:00 p.m., a badminton game from 9:00 a.m. to 11:00
a.m., and a basketball game from 11:30 a.m. to 1:30 p.m. on
a basketball court that is one-hour away by car from the
badminton stadium. Though Bob is interested in all three

• J. She and L. Chen are with the Department of Computer Science and En-
gineering, Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China. E-mail: {jshe, leichen}@cse.ust.hk.

• Y. Tong is with the State Key Laboratory of Software Development Envi-
ronment, School of Computer Science and Engineering and International
Research Institute for Multidisciplinary Science, Beihang University,
China. E-mail: yxtong@buaa.edu.cn.

• C.C. Cao is with Financial Data Technology Ltd., Hong Kong, China. The
work was done during his PhD at HKUST. E-mail: chen.cao@hkfdt.com.

1. http://www.groupon.com/
2. http://www.meetup.com/

sports, he can only attend at most one of them. In fact,
many users usually encounter the same problem: they have
to confront with a confusing choice from many conflicting events.

Besides resolving conflicts of events, it is appealing to
have an event-participant arrangement strategy that glob-
ally optimizes the benefits of both event organizers and
users, e.g. for organizing a carnival or a film festival.
Particularly, [2] [3] [4] [5] are the recent studies on such
event arrangement problem in static scenarios, a.k.a offline
scenarios, i.e. information of events and users is fully given.

In addition to the above static setting, the online setting
of EBSN platforms, which has not yet been studied, is
also important. That is, users can dynamically login EBSN
platforms at any time and register for events in a first-come, first-
served way. Since an EBSN platform cannot know in advance
whether users who are more interested in a certain event
will come later or not, it has to make decisions solely for the
current user. Imagine the following scenario. Carol is music
fan and wants to attend a concert. At the time she logs in,
only a pop and a jazz music concert are available with one
spot left, respectively. Carol decides to join the pop music
concert. Two days later, David, who is only interested in pop
music, logs in the platform. However, since the pop music
concert has no quota left, David cannot find any interesting
event to attend.

The aforementioned scenario depicts another practical
real-world setting of event arrangement on EBSNs: with
users logging in at any time, how to make proper arrange-
ment for users solely based on the information available so
that to maximize the overall satisfaction of both sides. As
offline algorithms cannot solve the online setting since full
information of events and users is no longer available, the
challenge of the online setting is to design a quality-guaranteed
algorithm to make online event arrangement on EBSNs.
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TABLE 1: Interestingness and Conflicts between Events and
Users

u1 (3) u2 (1) u3 (1) u4 (2) u5 (3) Conflicts
v1 (5) 0.93 0.43 0.84 0.64 0.65 v3
v2 (3) 0 0.35 0.19 0.21 0.4 NA
v3 (2) 0.86 0.57 0.78 0.79 0.68 v1

To further illustrate the motivation, we go through a toy
example as follows.

Example 1. Suppose we have three events v1 − v3 and five
users u1 − u5 in an EBSN. We assume that each event/user
is associated with a profile, which is represented by a multi-
dimensional attribute vector and can show its preferences towards
the participants/events. We can then calculate a user’s interest
in an event based on the similarity of their attributes. TABLE
1 presents the interestingness values between each pair of event
and user, as well as the conflicts between events. In addition,
each event/user has a capacity. For an event, the capacity is the
maximum number of participants, and for a user, the capacity
is the maximum number of assigned events. In this example,
v1−v3 have capacities of 5, 3, and 2, and u1−u5 have capacities
of 3, 1, 1, 2, and 3 respectively (in brackets). Events v1 and
v3 are conflicting. Notice that u1 is the most interested user in
both v1 and v3. However, u1 can only be assigned to one of v1

and v3. Existing methods do not consider conflicts of events and
thus yield an infeasible arrangement. A feasible and also optimal
arrangement that we want to achieve is shown in bold font in
TABLE 1, whose total interestingness values add up to 4.39.

For the online setting, suppose the users arrive at the platform
in the order of u5, u4, · · · , u1. In this case, one possible arrange-
ment is that u5 chooses to attend v2 and v3 when s/he arrives as
these two events are the most interesting to her/him and are non-
conflicting, u4 then attends v2 and v3, u3 attends v1, u2 can only
attend v1 but not v3 since v3 has been out of quota at the time
u2 arrives, and u1 finally attends v1, whose total interestingness
values add up to 4.28, which is less than the offline optimal one.

As discussed above, we propose a new event-participant
arrangement strategy, called Global Event-participant Ar-
rangement with Conflict and Capacity (GEACC). Specifi-
cally, given a set of events and a set of users, each one is
associated with a capacity to its type, which is the allowable
maximum number for its counterpart, and some events are
conflicting. Users have preferences to different events, each
of which is measured as a non-negative “interestingness
value”. The GEACC problem is to find an event-participant
arrangement, such that the sum of the interestingness values
over all the assigned pairs of event and user is maximized,
while the capacity and conflicting constraints are satisfied.
We also study an online version of the GEACC problem,
called OnlineGEACC, which is identical to GEACC except
that users in OnlineGEACC arrive at the EBSN platform one
by one in an online way and we have to make decision for
a newly arrived user solely based on the information that is
already available before the next user arrives.

In summary, we make the following contributions. Note
that different to our preliminary work [3], we make new
contributions by proposing the online setting of GEACC and
also an online algorithm.

• We identify a new event-participant arrangement

TABLE 2: Summary of Symbol Notations
Notation Description
V (U ) The set of events (The set of users)
lv (lu) Attribute vector of v (u)
d Dimension of lv/lu
T Maximum value of an element of lv/lu

cv (cu) Capacity of v (u)
sim(v, u) Interestingness value between v and u
CF A set of conflicting event pairs
M An arrangement for the events and the users

problem with extensive real-life applications, and
propose a formal definition of Global Event-
participant Arrangement with Conflict and Capacity
(GEACC) problem.

• We prove that GEACC is NP-hard and design two
approximation algorithms, MinCostFlow-GEACC
and Greedy-GEACC. MinCostFlow-GEACC has 1

α
approximation ratio, where α is the maximum of
users’ capacities, but is not scalable due to its quartic
time complexity. We further develop a more efficient
greedy-based approximation algorithm, which guar-
antees 1

1+α worst-case approximation ratio. We also
present an exact algorithm that utilizes an effective
pruning rule to reduce redundant search space.

• We propose an online setting of the GEACC prob-
lem and design an online algorithm, OnlineGreedy-
GEACC, with provable competitive ratio.

• We verify the effectiveness and efficiency of the
proposed offline and online methods with extensive
experiments on real and synthetic datasets.

The rest of the paper is organized as follows. We define
GEACC and OnlineGEACC in Section 2. Section 3 presents
two offline approximation algorithms. An exact solution
with pruning is presented in Section 4. Section 5 presents an
online algorithm with competitive ratio analysis. Extensive
experiment results are discussed in Section 6. We review
related works in Section 7 and conclude in Section 8.

2 PROBLEM STATEMENT

In this section, we first formally define GEACC, the offline
scenario. We then formulate the online version of GEACC,
OnlineGEACC.

2.1 Offline Scenario of GEACC
We first introduce two basic concepts, event and user, and
then formally define conflicting event pairs.

Definition 1 (Event). An event is defined as v =< lv, cv >,
where lv =< l1v, l

2
v, ..., l

d
v > with liv ∈ [0, T ],∀1 ≤ i ≤ d is a

d-dimensional attribute vector, the values of whose elements are
in the range of [0, T ], and cv is the capacity of the event, namely
the maximum number of attendees of the event.

Definition 2 (User). A user is defined as u =< lu, cu >, where
lu =< l1u, l

2
u, ..., l

d
u > with liu ∈ [0, T ],∀1 ≤ i ≤ d is a d-

dimensional attribute vector, the values of whose elements are in
the range of [0, T ], and cu is the capacity of the user, namely the
maximum number of arranged events for the user.

Basically, two events are conflicting if users cannot at-
tend them at the same time. For example, their timetables
may overlap, or their locations may be too far away for users
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Fig. 1: Illustrated example of MinCostFlow-GEACC.

who attend one of them to catch the other one. And we have
the following definition.

Definition 3 (Conflicting Event Pair). A pair of events {vi, vj}
are conflicting if a user can attend at most one of the two events
but not both.

Thus, in any feasible arrangement M of events and
users, no user can be assigned to conflicting events simulta-
neously. We denote m(v, u) = 1 or {v, u} ∈ M as user u is
assigned to event v, and m(v, u) = 0 or {v, u} /∈ M as u is
not assigned to v. We then define users’ interest in events as
follows.

Definition 4 (Interestingness Value). A user u’s interest (inter-
estingness value) in event v is measured by a similarity function
sim(lv, lu) ∈ [0, 1] based on the attributes lv of v and the
attributes lu of u.

Particularly, we use Equation (1) as our similarity func-
tion in the experiments, where

√
dT 2 is the furthest Eu-

clidean distance possible between any pair of lv, lu and thus
‖lv−lu‖2√

dT 2
is the normalized Euclidean distance between lv

and lu. Note that other similarity functions or even matrices
denoting the interestingness values are applicable to our
problem. We assume that maxu sim(lv , lu) > 0, ∀v ∈ V and
maxv sim(lv , lu) > 0, ∀u ∈ U so that no event/user is negligible
(events that are not interesting to any user or users who are
not interested in any event).

sim(lv, lu) = 1− ‖lv − lu‖2√
dT 2

(1)

We finally define our problem as follows.

Definition 5 (GEACC Problem). Given a set of events V ,
each v of which with capacity cv and attributes lv , a set of
users U , each u of which with capacity cu and attributes lu,
a set of conflicting event pairs CF and a similarity function,
find an arrangement M among events and users to maximize
MaxSum(M) =

∑
v∈V,u∈U m(v, u)sim(lv, lu) such that

•
∑
um(v, u) ≤ cv,∀v ∈ V and

∑
vm(v, u) ≤ cu,∀u ∈

U
• sim(lv, lu) > 0,∀{v, u} ∈M
• There does NOT exist a triple vi, vj , uk such that

m(vi, uk) = 1, m(vj , uk) = 1, and {vi, vj} ∈ CF

Note that we assume that maxv cv ≤ |U | and maxu cu ≤
|V |. Also note that “matching” and “arrangement” are used
interchangeably in this paper. For example, Example 1 in

Section 1 illustrates the concepts of capacity and interesting-
ness values and an optimal arrangement that satisfies the
capacity and conflict constraints is shown. Table 2 summa-
rizes the symbol notations. We next show the NP-hardness
of the GEACC problem.

Theorem 1. The GEACC problem is NP-hard.

Proof. Please see the Appendix.

2.2 Online Scenario of GEACC
We finally formally define the online setting of the GEACC
problem as follows.

Definition 6 (OnlineGEACC Problem). Given a set of events
V , each v of which has capacity cv and attributes lv , a set of
users U , each u of which arrives at the EBSN platform one by one
with capacity cu and attributes lu, which are unknown before u
appears, a set of conflicting event pairs CF and a similarity func-
tion, find an arrangementM among events and users to maximize
MaxSum(M) =

∑
v∈V,u∈U m(v, u)sim(lv, lu) such that

• The arrangement for a new-coming u must be decided
before the next user appears and cannot be revoked.

• The three constraints of GEACC are satisfied.

Notice that the most important constraint of Onli-
neGEACC is that decisions for a new-coming user should
be made immediately and cannot be revoked. For example,
Example 1 in Section 1 also explains the online scenarios that
the users arrive one by one in the order of u5, u4, · · · , u1 and
how the online decision for each user is made.

3 APPROXIMATE SOLUTIONS FOR GEACC
In this section, we present two approximation algorithms for
the GEACC problem. The first one is based on the minimum
cost flow problem but is not scalable for large datasets.
We then propose the second more efficient approximation
algorithm.

3.1 MinCostFlow-GEACC Algorithm
The idea of MinCostFlow-GEACC is to first ignore the
conflict condition and try to find a matching with maximum
sum of interestingness values, and then resolve conflicts
afterwards. Without considering conflicts, i.e. CF = ∅,
GEACC can be reduced to the minimum cost flow (MCF)
problem as explained shortly. Thus, we transform a GEACC
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instance to an MCF instance and obtain a temporary match-
ing based on the solution of the transformed MCF instance.
To resolve the conflicts in the temporary matching, we use a
greedy method to select the most interesting non-conflicting
events for each user. We first explain the first step in detail.

Given an instance of GEACC with CF = ∅, we construct
a flow network GF = (NF , AF ) as follows. NF = V ∪ U ∪
{s, t}, where s is a source node and t is a sink node. For ev-
ery pair v ∈ V, u ∈ U (including those with sim(lv, lu) = 0),
there is a directed arc aF (v, u) ∈ AF from v to u with
aF (v, u).cost = 1 − sim(lv, lu) and aF (v, u).capacity = 1.
For every v ∈ V , there is a directed arc aF (s, v) ∈ AF from
s to v with aF (s, v).cost = 0 and aF (s, v).capacity = cv .
For every u ∈ U , there is a directed arc aF (u, t) ∈ AF from
u to t with aF (u, t).cost = 0 and aF (u, t).capacity = cu.
The flow of an arc is integer-valued. We then send different
amounts of flows from s to t. Specifically, for each ∆ ∈
{∆min,∆min+1, · · · ,∆max}, where ∆min = min{|V |, |U |}
and ∆max = min{

∑
v cv,

∑
u cu}, we send an amount of

∆ flows and calculate its corresponding minimum cost
flow F∆ = {flow∆(aF )}. We also obtain an arrange-
ment M∆

∅ corresponding to ∆ by letting m∆
∅ (v, u) = 1 iff

flow∆(v, u) = 1 and sim(lv, lu) > 0. Finally, we select the
arrangement M∅ from {M∆min

∅ ,M∆min+1
∅ , · · · ,M∆max

∅ }
with the maximum MaxSum as the arrangement for the
GEACC instance with CF = ∅. Particularly, we use the
Successive Shortest Path Algorithm (SSPA) to calculate the
minimum cost flow since it is the one suitable for large-scale
data and many-to-many matching with real-valued arc costs
as pointed out by [6].

After obtaining M∅, our second step is to resolve the
conflicts. For each u ∈ U , we select a set of non-conflicting
events from the ones assigned to u in M∅ such that the sum
of the interestingness values between u and the selected
events is maximized. Note that such selection procedure is
identical to the maximum-weight independent set problem
by regarding non-conflicting events as independent to each
other and taking the similarity between u and an event as
the weight of the event. The maximum-weight independent
set problem is NP-hard [7]. Therefore, we find a set in a
greedy way by iteratively selecting the most similar unse-
lected pair that does not conflict with any pair that is already
selected.

The whole procedure is illustrated in Algorithm 1. In
lines 1-6, we first construct a flow network GF and calculate
the minimum cost flow on GF with different amounts of
flows as described previously, and then obtain a temporary
matching M∅. In the second step, we obtain a feasible
matching M by resolving the conflicting events for each u
in lines 7-12. Particularly, at each iteration, we greedily add
the most similar pair possible in lines 9-12.

Example 2. Back to our running example in Example 1. Fig. 1a
shows the flow network GF . Fig. 1b shows the minimum cost
flow corresponding to M∅, where each presented arc has flow
at least one. The arcs with flows larger than one are marked,
and the others have flow of one. Notice that u1 is assigned
to conflicting events v1 and v3 simultaneously in M∅. Since
sim(lv1 , lu1

) > sim(lv3 , lu1
), only v1 is assigned to u1 in the

final result. Similarly, for u5, we remove {v1, u5} and assign
v3 to u5. Fig. 1c shows the final arrangement result, which has

Algorithm 1: MinCostFlow-GEACC

input : V,U, {cv}, {cu}, {lv}, {lu}, CF
output: A feasible arrangement M

1 construct GF = (NF , AF );
2 foreach ∆← ∆min to ∆max do
3 F∆ ←MinCostFlow(GF ,∆);
4 construct M∆

∅ accordingly;
5 if MaxSum(M∆

∅ ) > MaxSum(M∅) then
6 M∅ ←M∆

∅ ;

7 foreach u ∈ U do
8 L← sorted list of {v|m∅(v, u) = 1} in

non-increasing order of sim(lv, lu);
9 for i← 1 to |L| do

10 vLi ← the i-th element of L ;
11 if vLi does not conflict with u’s matched events in

M then
12 m(v, u)← 1;

13 return M

MaxSum = 4.13.

Approximation Ratio. Next, we study the approxima-
tion ratio of MinCostFlow-GEACC.

Lemma 1. The M∅ obtained from the minimum cost flows of GF

is optimal for the GEACC instance with CF = ∅.

Proof. Please see the Appendix.

Corollary 1. Let MOPT = {mOPT } denote the optimal feasible
matching. It holds that MaxSum(MOPT ) ≤MaxSum(M∅).

Theorem 2. For the matching M returned by MinCostFlow-
GEACC, it holds that MaxSum(M) ≥ MaxSum(MOPT )

max cu
, i.e.

MaxSum(M) is at least 1
max cu

of the optimal result.

Proof. Please see the Appendix.

Complexity Analysis. The first step takes
O((∆2

max − ∆2
min)|V ||U | log(|V | + |U |)) time.

For the second step, the time complexity is
O(|U |((max cu) log(max cu) + (max cu)2)) =
O(|U |(max cu)2), where O((max cu) log(max cu) is the
cost of line 8 and O((max cu)2) is the cost of lines
9-12. Since max cu is relatively small compared to
the other parameters, the major time consumption
of MinCostFlow-GEACC comes from computing the
minimum cost flow. In summary, the total time cost is
O((∆2

max −∆2
min)|V ||U | log(|V |+ |U |) + |U |(max cu)2).

3.2 Greedy-GEACC Algorithm
MinCostFlow-GEACC could be inefficient when the scale
of data is large. In this subsection, we present a more effi-
cient algorithm, Greedy-GEACC. The main idea of Greedy-
GEACC is to greedily add the most similar unmatched
pair {v, u} that does not conflict with existing matched
pairs into the current matching at each iteration. Unlike
MinCostFlow-GEACC that resolves conflicts after obtaining
a temporary result, Greedy-GEACC avoids conflicts from
the first beginning.
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Specifically, we maintain a heapH to store the most simi-
lar pair candidates between v ∈ V and u ∈ U and extract the
most similar one from H at each iteration. We initialize H
as follows. For each v ∈ V , we find its first nearest neighbor
(NN) unn ∈ U , i.e. sim(lv, lunn

) ≥ sim(lv, lu′),∀u′ ∈ U .
We call unn a visited neighbor of v, and the others unvisited
neighbors. Each such pair {v, unn} is pushed into H . Note
that sim(lv, lunn

) > 0 according to our problem definition.
Similarly, for each u ∈ U , we also find its first NN vnn ∈ V .
We also call vnn a visited neighbor of u. For each such pair
{vnn, u}, if it is not yet in H , we push it into H . Thus,
NO pair is pushed into H for more than once. After the
initialization step, we enter the iteration of greedily adding
the most similar pair in H into the current matching, which
is empty initially.

We then iterate as follows. At each iteration, we pop the
pair {v, u} with sim(lv, lu) ≥ sim(lv′ , lu′),∀{v′, u′} ∈ H
from H , which we call a visited pair. Thus, pairs that have
not yet been pushed into H or those that are still in H are
called unvisited. If neither v nor u is full in capacity, and
{v, u} does not conflict with existing matched pairs, we
can safely add {v, u} into the current matching by setting
m(v, u) = 1 and decreasing the available capacities of v and
u by one respectively. Whether {v, u} is added to the current
matching or not, we then update H as follows. For v, if it
is not yet fully occupied, we find its next feasible unvisited
NN unn ∈ U , i.e. sim(lv, lunn

) ≥ sim(lv, lu′),∀ feasible
unvisited neighbor u′ of v, where we call an unvisited
neighbor u′ feasible if sim(lv, lu′) > 0 and {v, u′} satisfies
the capacity and conflict constraints if it is to be added to the
matching. Note that unn may not exist as there may be no
more feasible unvisited neighbors in U for v. In such case,
we do nothing to H . Otherwise, {v, unn} is pushed into H
if it is not yet in H . We call v a finished node if unn cannot
be found for v. Similarly, for u, we also find its next feasible
unvisited NN vnn ∈ V if u is not yet fully occupied. If vnn
exists and {vnn, u} is not yet in H , we push {vnn, u} into
H . We also call u a finished node if vnn cannot be found for
u. unn(vnn) becomes v(u)’s visited neighbor if it exists. After
updating H , we proceed to the next iteration. The iteration
procedure terminates when H becomes empty.

The procedure of Greedy-GEACC is illustrated in Algo-
rithm 2. In lines 1-9, we initialize the heap H by pushing
each v(u) and its first NN in U (V ) into H . In lines 11-23, we
iteratively pop the most similar pair {v, u} from H and add
it to the current matching if possible. Lines 13-15 check the
feasibility of the pair before adding it to the matching. Then
in lines 16-23, we push v(u) paired with its next feasible
unvisited NN in U (V ) intoH if possible. The whole iteration
terminates when H becomes empty.

Example 3. We continue to use Example 1 for illustration of
Greedy-GEACC. Fig. 2a shows the state of H after the first
iteration, where {v1, u1} is popped from H and added to the
matching. The next feasible unvisited NN of v1 is u3 but {v1, u3}
is already in H , so we do not push {v1, u3} into H. As the next
feasible unvisited NN of u1 cannot be found, u1 becomes a finished
node. Then in the second iteration, as shown in Fig. 2b, we pop
{v3, u1} from H. Note that v3 conflicts with v1, which is already
matched to u1, so we cannot add {v3, u1} to the matching. The
next NN of v3 is u4, and {v3, u4} is already in H , so we do not

Algorithm 2: Greedy-GEACC

input : V,U, {cv}, {cu}, {lv}, {lu}, CF
output: A feasible arrangement M

1 H ← ∅;
2 foreach v ∈ V do
3 unn ← v’s first NN in U ;
4 push {v, unn} into H ;

5 foreach u ∈ U do
6 vnn ← u’s first NN in V ;
7 if {vnn, u} /∈ H then
8 push {vnn, u} into H ;

9 heapify H ;
10 m(v, u)← 0,∀v ∈ V, u ∈ U ;
11 while H 6= ∅ do
12 extract the most similar pair {v, u} from H ;
13 if (cv > 0) and (cu > 0) and (v does not conflict with

u’s matched events) then
14 m(v, u)← 1;
15 decrease cv, cu by 1;

16 if cv > 0 then
17 unn ← v’s next feasible unvisted NN;
18 if unn∃ and {v, unn} /∈ H then
19 push {v, unn} into H ;

20 if cu > 0 then
21 vnn ← u’s next feasible unvisited NN;
22 if vnn∃ and {vnn, u} /∈ H then
23 push {vnn, u} into H ;

24 return M

push {v3, u4} into H . Then during the third iteration, {v1, u3}
is popped from H , which can be added to the matching. The next
NN of v1 is u5, and we push {v1, u5} into H (in bold). Note
that u3 has been fully occupied, so we do not find the next NN of
u3. Subsequent iterations are omitted for brevity. Fig. 2d shows
the final iteration, where H becomes empty and we have a final
arrangement with MaxSum of 4.28.

We next show some properties and the correctness of
Greedy-GEACC.

Lemma 2. For every v(u), if v(u) is not a finished node, at least
one pair incident to v(u) is in H before the next iteration.

Proof. Please see the Appendix.

Lemma 3. At each iteration of Greedy-GEACC, the most
similar unvisited pair {v, u} possible is popped from H , i.e.
sim(lv, lu) ≥ sim(lv′ , lu′) for all feasible unvisited {v′, u′} ∈
{{v′, u′}|v′, u′ are unfinished}.

Proof. Please see the Appendix.

Corollary 2. At each iteration of Greedy-GEACC, for the popped
pair {v, u}, it holds that sim(lv, lu) ≤ sim(lv′ , lu′),∀ visited
{v′, u′}.

Lemma 4. Greedy-GEACC terminates after a finite number of
iterations.

Proof. Please see the Appendix.
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H = {{ }:0.93, 

{ }:0.86, { }:0.84, 

{ }:0.79, { }:0.68, 

{ }:0.57, { }:0.4}

(a) 1st iteration

H = {{ }:0.86, 

{ }:0.84, { }:0.79, 

{ }:0.68, { }:0.57, 

{ }:0.4}

(b) 2nd iteration

H = {{ }:0.84, 

{ }:0.79, { }:0.68, 

{ }:0.65, { }:0.57, 

{ }:0.4}

(c) 3rd iteration

H = {{ }:0.21}

(d) Final iteration

Fig. 2: Illustrated example of Greedy-GEACC.

Lemma 5. When Greedy-GEACC terminates, no more un-
matched pair {v, u}, i.e. m(v, u) = 0, can be added to the current
matching.

Proof. Please see the Appendix.

Lemmas 2 to 5 ensure that Greedy-GEACC adds the
most similar unvisited pair possible into the matching at
each iteration and terminates when the current matching
can no more be improved by adding new unmatched pairs.

Approximation Ratio. We next study the approximation
ratio of Greedy-GEACC.

Theorem 3. For the matching M returned by Greedy-
GEACC, it holds that MaxSum(M) ≥ MaxSum(MOPT )

1+max cu
, i.e.

MaxSum(M) is at least 1
1+max cu

of the optimal result.

Proof. Please see the Appendix.

Complexity Analysis. Without limiting ourselves to us-
ing specific index, let σ(S) denote the time to find a k-th
NN in a set S. Note that a number of index techniques can
be used in our problem, such as iDistance [8] and VA-File
[9]. It follows that the time cost of the initialization step is
O(|V |σ(V ) + |U |σ(U) + |V | + |U |), where O(|V | + |U |) is
cost of building H . In the second step, we have at most
O(|V ||U |) iterations, each of which takes O(log(|V |+ |U |))
to pop a pair fromH andO(σ(V )+σ(U)+log(|V |+|U |)) to
push new pairs into H . In summary, Greedy-GEACC takes
O(|V ||U |(σ(V ) + σ(U) + log(|V |+ |U |))) time in the worst
case.

4 EXACT SOLUTION FOR GEACC
In this section, we present an exact solution for the GEACC
problem. Since GEACC is NP-hard, it seems that the only
way to find an optimal solution is to enumerate all possible
matchings and select the optimal one. Without pruning,
the search space will be as large as 2|V |×|U |. To improve
efficiency, we propose a pruning technique to reduce the
search space. We name this exact algorithm Prune-GEACC.

Basically, in any matching, each pair {v, u} has two
states: matched or unmatched. Thus, we search possible
matchings by enumerating different combinations of states
of all pairs in a recursive way. Specifically, for each v, let
uv,j be its j-NN in U and sv be sim(lv, luv,1). Let L be the
sorted list of v in non-increasing order of sv × cv , where the
i-th element is vLi . We visit each element in L in order, and

Algorithm 3: Prune-GEACC

input : V,U, {cv}, {cu}, {lv}, {lu}, CF
output: A feasible arrangement M

1 M ← Greedy-GEACC();
2 foreach v ∈ V do
3 uv,1 ← 1-NN of v;
4 sv ← sim(lv, luv,1

);

5 L← sorted list of v in non-increasing order of sv × cv ;
6 sumremain ←

∑
2≤k≤|V | svLk × cvLk ;

7 mc(v, u)← 0,∀v ∈ V, u ∈ U ;
8 Search-GEACC(1, 1);
9 return M

enumerate each pair {v, u} incident to v in non-increasing
order of sim(lv, lu). In other words, we visit |U | NNs of v
in order. Let {vLi , ui,j} be the pair that will be visited next,
Mvisited be the partial matching determined by the states of
the visited pairs, and Mbest be the best complete matching
found so far. And we have the following lemma.

Lemma 6. Let

summax(vLi , ui,j) = MaxSum(Mvisited)+∑
i+1≤k≤|V |

svLk × cvLk + sim(lvLi , lui,j )× cvLi ,remain (2)

where cvLi ,remain is the remaining capacity of vLi after be-
ing assigned partially in Mvisited. If summax(vLi , ui,j) ≤
MaxSum(Mbest), for any matching M ′ ⊇ Mvisited, it holds
that MaxSum(M ′) ≤ MaxSum(MOPT ), where MOPT is
the optimal matching.

Proof. Please see the Appendix.

Lemma 6 indicates that when we are about to
visit a pair {vLi , ui,j} during the recursion process, if
summax(vLi , ui,j) ≤MaxSum(Mbest), we can safely prune
at {vLi , ui,j} as no matching better than the current one
could be found by visiting the remaining unvisited pairs.
Therefore, in Prune-GEACC, we maintain summax(vLi , ui,j)
and prune at a certain search node whenever Lemma 6
holds. First note that actually we do not need to repetitively
calculate summax(vLi , ui,j) by summing over all unvisited
pairs. We maintain sumremain =

∑
i+1≤k≤|V | svLk ×cvLk , and

summax(vLi , ui,j) = MaxSum(Mvisited) + sumremain +
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Algorithm 4: Search-GEACC
input : vid, uid

1 v ← vLvid ;
2 u← uid-NN of v;
3 if cv > 0 and cu > 0 and v does not conflict with u’s

matched events then
4 mc(v, u)← 1;
5 decrease cv, cu by 1;
6 if uid = |U | or cv = 0 then
7 if vid = |V | then
8 if MaxSum(Mc) > MaxSum(M) then
9 update M to Mc;

10 else if
MaxSum(Mc) + sumremain > MaxSum(M)
then

11 sumremain ← sumremain−svLvid+1
×cvLvid+1

;
12 Search(vid + 1, 1);
13 recover sumremain;
14 else
15 unn ← (uid + 1)-NN of v;
16 if MaxSum(Mc) + sumremain +

sim(lv, lunn
)× cv > MaxSum(M) then

17 Search(vid, uid + 1);

18 mc(v, u)← 0;
19 increase cv, cu by 1;

20 Same as lines 6-17;

sim(lvLi , lui,j ) × cvLi ,remain. sumremain is maintained as
follows. Initially, sumremain =

∑
2≤k≤|V | svLk × cvLk . When-

ever we are about to visit {vLi , ui,1}, we simply subtract
svLi × cvLi from sumremain. Also note that initially, our
best matching is empty, which could reduce the efficiency
of Prune-GEACC at the beginning of recursion. Therefore,
we run Greedy-GEACC first before running Prune-GEACC,
and use the matching found by Greedy-GEACC as the best
matching found so far so that to prune poor matchings from
the first beginning.

The main procedure of Prune-GEACC is illustrated in
Algorithm 3. In line 1, we find an initial matching M by
running Greedy-GEACC. In lines 2-4, we find the 1-NN uv,1
in U for each v and obtain sv . In lines 5-7, we initialize L,
sumremain and Mc. We enter recursion by visiting the first
element in L and its 1-NN in line 8.

Algorithm 4 illustrates the Search recursion procedure of
Prune-GEACC. At each depth of recursion, we enumerate
the two states of a particular pair {v, u}, where v is the vid-
th element in L, and u is the uid-NN of v. If {v, u} satisfies
certain constraints (line 3), we enumerate the state of {v, u}
as matched in lines 4-19. In lines 4-5, we add {v, u} to the
current matching Mc, and decrease the capacities of v, u
properly. If uid is |U | or v is fully occupied, we proceed to
the next element vLvid+1 in L and enumerate the states of pair
vLvid+1 and its 1-NN in U (lines 7-13). Otherwise, we proceed
to the next NN of v and enumerate the states between it and
v (lines 15-17). In lines 7-9, we check whether all pairs have
been enumerated and update the best matching found so far
(lines 8-9). Otherwise, we check whether enumerating the

remaining pairs could yield a better matching (line 10). If
finding a better matching is possible, we update sumremain

and proceed to enumerating the next pair (lines 11-13).
Similarly, we check whether finding a better matching is
possible in line 15 if we are to proceed to enumerating the
pair of v and its next NN. In line 20, we enumerate the state
of {v, u} as unmatched, the procedure of which is the same
as lines 6-17.

5 SOLUTION TO ONLINEGEACC
In this section, we present the solution to the online sce-
nario of GEACC, i.e. OnlineGEACC. Notice that the offline
solutions mentioned above cannot solve OnlineGEACC. The
reason is that offline solutions need full information of
events and users, which is no longer available in online
scenarios. For example, MinCostFlow-GEACC needs all at-
tribute and capacity values of users to construct the flow
network, and Greedy-GEACC needs to know the pair of
event and users with the globally largest similarity value
repetitively. However, in the online scenarios, since users
come one by one and information of subsequent users can-
not be known in advance, no way can the offline solutions
be applicable. Therefore, we present an algorithm called
OnlineGreedy-GEACC specifically for the OnlineGEACC
problem, which is based on the framework of [10]. The
difference between our algorithm and the framework in [10]
is that [10] does not address the conflicts of nodes.

The main idea of the OnlineGreedy-GEACC algorithm is
to greedily match pairs of events and users whose interest-
ingness values are above a randomly chosen threshold: we
first randomly pick a threshold on the weights of the edges,
i.e. the interestingness values of the pairs, to be matched,
and then for each new coming user u, we find all the events
that can be feasibly matched to v and have interestingness
values with u no less than the picked threshold and greedily
arrange at most cu events to u that are of the largest
interestingness values with u.

Specifically, in the OnlineGreedy-GEACC algorithm, we
first sample a k uniformly from {1, 2, ..., d− log2 wmine},
where wmin is the minimum possible interestingness value
of a user towards an event other than zero, which can be
learned from historical values and can be regarded as an
arbitrarily small real number. We then pick the threshold as
θ = 1

2k . Then whenever a new user u comes, we first find
all the events v in V that are not yet full in capacity and
have interestingness values no less than the threshold, i.e.
sim(v, u) ≥ θ, which result in V ′. If V ′ is empty, no event
will be arranged to u. Otherwise, we visit each event in V ′ in
non-increasing order of their interestingness values with u
and assign a visited event to u if it does not conflict with any
event that is already assigned to u until u is full of capacity
or all the events in V ′ have been visited, whichever occurs
first. Notice that the process of visiting events in V ′ can be
regarded as selecting at most cu non-conflicting events that
are most interesting to u from V ′.

The procedure is illustrated in Algorithm 5. In lines 1-
2, we randomly pick a threshold θ. We then keep looping
lines 3-9 to make arrangement for each new-coming user
u. Specifically, we first construct the set V ′ whose events
are non-full and have interestingness values with u no less
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Algorithm 5: OnlineGreedy-GEACC

input : V,U, {cv}, {cu}, {lv}, {lu}, CF
output: A feasible arrangement M

1 sample k ← {1, 2, ..., d− log2 wmine} uniformly;
2 θ ← 1

2k ;
3 foreach new-arrival u do
4 V ′ ← {v ∈ V |cv > 0 and sim(v, u) ≥ θ};
5 foreach v ∈ V ′ in non-increasing order of sim(v, u)

do
6 if v does not conflict with u’s matched events then
7 m(v, u)← 1;
8 decrease cv, cu by 1;

9 break if cu becomes 0;

10 return M

than the threshold in line 4. We then visit each v ∈ V ′ in
non-increasing order of sim(v, u) and assign the valid ones
to u and update their left-over capacity accordingly until u
becomes full in capacity in lines 5-9.

Example 4. Back to our running example. Suppose again the
arrival order of users is u5, u4, · · · , u1. Notice that the min-
imum interestingness value other than zero is 0.19, and thus
d− log2 wmine = 3. Suppose k is sampled as 2 and thus
θ = 0.25. Then when u5 first comes, V ′ = {v1, v2, v3} and we
assign the most interesting combination v3 and v2 to it. When u4

comes, V ′ = {v1, v3} and only the most interesting v3 is assigned
to u4 since v1 conflicts with v3. Similarly, v1 is assigned to each
of u3, u2, u1, respectively, when they come, and the MaxSum
value is 4.07.

Competitive ratio. We next study the competitive ratio
of OnlineGreedy-GEACC, the analysis of which is based on
the framework in [10]. The difference between our analysis
and the framework in [10] is that [10] does not need to
consider the conflicts or capacities of nodes.

Theorem 4. OnlineGreedy-GEACC has competitive ratio of
1

2d− log2 wmine(max cu+2) .

Proof. Let O denote the offline optimal matching result.
Suppose k is sampled as i. First, consider the set S =
O[ 1

2i
, 1
2i−1 ) \M≥ 1

2i
, where O[ 1

2i
, 1
2i−1 ) denotes the subset of

edges in O whose weights, i.e. interestingness values, lie
in the interval [ 1

2i ,
1

2i−1 ) and M≥ 1
2i

denotes the subset of
edges in the matching returned by OnlineGreedy-GEACC
when k = i. Notice that when i = 1, S = O[ 1

2i
, 1
2i−1 ] \M≥ 1

2i
.

For brevity, we also denote as O[ 1
2i
, 1
2i−1 ) in the subsequent

proof even when i = 1.
For each edge (v, u) in S, it is unmatched in M≥ 1

2i

due to three possible cases: (1) v is already full in capacity
when u arrives; (2) v conflicts with an event matched to
u; (3) u is matched to other events and is already full in
capacity when visiting v. Notice that all the three cases can
“blame” a certain edge in M≥ 1

2i
, and each edge in M≥ 1

2i
is

“responsible” for at most max cu + 1 edges in S. Therefore,
we have

|O[ 1
2i

, 1
2i−1 ) \M≥ 1

2i
| ≤ (max cu + 1)|M≥ 1

2i
| (3)

and

TABLE 3: Real Dataset

City |V | |U | cv cu
|CF |

|V |(|V |−1)/2

VA 225 2012 Uni.: [1, 50] Uni.: [1, 4] 0, 0.25,
Auckland 37 569 Nor.: µ = 25, Nor.: µ = 2, 0.5, 0.75,
Singapore 87 1500 σ = 12.5 σ = 1 1

|O[ 1
2i

, 1
2i−1 )| = |O[ 1

2i
, 1
2i−1 ) ∩M≥ 1

2i
|+ |O[ 1

2i
, 1
2i−1 ) \M≥ 1

2i
|

≤ |M≥ 1
2i
|+ (max cu + 1)|M≥ 1

2i
|

= (max cu + 2)|M≥ 1
2i
| (4)

Since MaxSum(O[ 1
2i

, 1
2i−1 )) ≤

1
2i−1 |O[ 1

2i
, 1
2i−1 )|, we have

MaxSum(M≥ 1
2i
) ≥ 1

2i
|M≥ 1

2i
|

≥ 1

2i(max cu + 2)
|O[ 1

2i
, 1
2i−1 )|

≥ 1

2(max cu + 2)
MaxSum(O[ 1

2i
, 1
2i−1 )) (5)

Now consider O. Let N = d− log2 wmine. We have

MaxSum(O) =
N∑
i=1

MaxSum(O([ 1
2i

, 1
2i−1 ))) (6)

Then
E(MaxSum(M)) =

N∑
i=1

1

N
MaxSum(M≥ 1

2i
)

≥

N∑
i=1

MaxSum(O[ 1
2i

, 1
2i−1 ))

2N(max cu + 2)

=
MaxSum(O)

2N(max cu + 2)

=
MaxSum(O)

2d− log2 wmine(max cu + 2)
(7)

Complexity analysis. For each new-coming event, we
spend at most O(|V |) time to construct the set V ′ whose
size is at most |V |. We then spend O(|V ′| log |V ′|) time to
sort V ′ in order and at most O(cu) time to check conflicts
when visiting an event in V ′. Therefore, the time complexity
is O(|V | log |V | + |V |cu) for each user, and the space com-
plexity is O(|V |).

6 EVALUATION

6.1 Experiment Setup
We use both real and synthetic datasets for experiments.
We use the Meetup dataset from [1] as real dataset. In the
Meetup dataset, each user is associated with some tags and
a location. The events are not explicitly associated with tags,
but each event is organized by a “group” on Meetup, and
each group is associated with some tags. Thus, for each
event, we use the tags of the group who creates it as the
tags of the event itself. To remove misspelled and redundant
tags, we merge the tags with the same meaning and select 20
most popular tags as attributes of users/events, and use the
normalized frequencies of the tags as attribute values. Since
it is unlikely for a user living in a city to attend a meet-up
event held in another city, we cluster events and users based
on their locations and focus on the events/users located in
the same city. We select three popular cities, Vancouver,
Auckland, and Singapore, and extract events and users
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TABLE 4: Synthetic Dataset

Factor Setting
|V | 20, 50, 100, 200, 500
|U | 100, 200, 500, 1000, 2000, 5000
d 2, 5, 10, 15, 20

liv , l
i
u

(T = 10000) Uniform: [0, T], Zipf: 1.3
Normal: µ = T/4, σ = T/4; µ = 3T/4, σ = T/4

cv
Uniform: [1, 10], [1, 20], [1, 50], [1, 100], [1, 200]

Normal: µ = 25, σ = 12.5

cu
Uniform: [1, 2], [1, 4], [1, 6], [1, 8], [1, 10]

Normal: µ = 2, σ = 1
|CF |

|V |(|V |−1)/2
0, 0.25, 0.5, 0.75, 1

Scalability |V | = 100, 200, 500, 1000
|U | = 10K, 25K, 50K, 75K, 100K

located within the area around each city. Since capacity
and conflict information is not given in the dataset, we
generate capacity of events/users following Uniform and
Normal distribution, and randomly select a subset of event
pairs as conflicting pairs. TABLE 3 presents the statistics
and configuration. For synthetic data, we generate attribute
values and capacity of events/users following Uniform,
Normal and Zipf distributions respectively. Statistics and
configuration of synthetic data are illustrated in TABLE 4,
where we mark our default settings in bold font. Note that
all generated capacity values are converted into integers.

We mainly evaluate our algorithms in terms of
MaxSum, running time and memory cost, and study the
effect of varying parameters on the performance of the
algorithms. Notice that some figures are plotted in log scale
for clearness. For OnlineGEACC, since the arrival orders of
users are random, we randomly run 50 different orders for
each setting and run 5 times for each order as OnlineGreedy-
GEACC is randomized. We report the average MaxSum
values and memory costs over all 50 × 5 = 250 tests and
also the average running time for a user over all 250 tests.
For example, if processing all 1000 users takes 1 second
on average over 250 tests, we report the running time
as 1/1000 = 1ms per user on average. wmin is set to
0.0001. The algorithms are implemented in C++, and the
experiments were performed on a machine with Intel i7-
2600 3.40GHZ 8-core CPU and 8GB memory.

6.2 Evaluation for GEACC

Baselines. We use two random algorithms as baselines. For
the first baseline, Random-V, we iterate over each v ∈ V ,
and at each iteration add each pair {v, u},∀u ∈ U into M
with probability cv

|U | if {v, u} satisfies all the constraints. For
the second baseline, Random-U, we iterate over each u ∈ U ,
and at each iteration add each pair {v, u},∀v ∈ V into M
with probability cu

|V | if {v, u} satisfies all the constraints.
Effect of cardinality. We first show the effect of varying

cardinality of V and U . The first column of Fig. 3 shows the
results on varying |V |, where the other parameters are set to
default. We have the following observations. First, Greedy-
GEACC performs the best. Greedy-GEACC consumes as
less as space as the baselines do while is slightly ineffi-
cient than the baselines, and returns matchings with the
largest MaxSum. Second, MinCostFlow-GEACC achieves
larger MaxSum than the baselines do but is much less
efficient in both time and space. Third, MaxSum increases
when |V | becomes larger, but the increase becomes smaller

when |V | gets large. This is because when |V | is larger,
users generally have more matching options and there may
be more matched pairs. However, when |V | becomes too
large, users’ capacity will become saturated and thus the
MaxSumwill increase slower. Finally, the running time and
memory cost increases (slightly for Greedy-GEACC) as |V |
increases, which is natural as the data size becomes larger.

The second column of Fig. 3 shows the results on varying
|U |, which have similar patterns to those when |V | varies.

Effect of dimensionality. We next show the results of
varying the dimensionality d of the attribute space in the
third column of Fig. 3. We can observe that MaxSum
decreases as d increases since the attribute space becomes
sparser when d increases, which leads to the larger averaged
distance between attribute vectors. Also, d has slight effect
on both the time and space consumption of the algorithms.

Effect of conflict set size. The last column of Fig. 3 shows
the results of varying |CF |, where we vary the size of CF
w.r.t. the size of event pairs, i.e. |V |(|V | − 1)/2. Notice there
are two extreme cases: when |CF |/(|V |(|V | − 1)/2) = 0,
i.e. CF = ∅, and when |CF |/(|V |(|V | − 1)/2) = 1, i.e.
every pair of events are conflicting. The other parameters
are set to default. We have the following observations. First,
when CF = ∅, MinCostFlow-GEACC has a slightly better
MaxSum than Greedy-GEACC does, which is reasonable
as MinCostFlow-GEACC returns an optimal matching in
this case. Second, MaxSum decreases when the relative
size of CF increases. This is reasonable as the number of
possible matched pairs decreases as |CF | increases. Finally,
the varying size ofCF has little effect on the running time of
the algorithms, as the cost of the algorithms mainly depends
on the size of V and U .

Effect of capacity. We next study the effect of capac-
ity of events and users. We first study the results when
cv varies, which are shown in the first column of Fig.
4. The values of cv are generated uniformly in range [1,
max cv], where max cv varies in our experiment. Thus,
when max cv increases, the overall capacity of v increases
too. We have the following observations. First, MaxSum
generally increases as cv becomes larger. This is reason-
able as events can accommodate more users who are in-
terested in them when their capacity increases. Second,
increasing cv results in larger time cost of MinCostFlow-
GEACC, but has little effect on Greedy-GEACC and the
baselines. This is because when cv increases, the num-
ber of iterations for calculation of minimum cost flow in
MinCostFlow-GEACC also increases, leading to larger time
consumption of MinCostFlow-GEACC. Notice that when
cv is large w.r.t. |U |(= 1000), the increase of time cost of
MinCostFlow-GEACC becomes slighter since the amount
of flow in such cases is determined by cu (remember that
∆max = min{

∑
cv,

∑
cu}). Finally, varying cv has little

effect on the memory cost of all the algorithms.
The second column of Fig. 4 shows the results of varying

cu. Similary, the values of cu are generated uniformly in
range [1, max cu] and max cu varies in our experiment. We
observe that the results have similar patterns as those of
varying cv though with some fluctuation due to the small
gap between consecutive max cu’s.

Effect of distribution. The third column of Fig. 4 shows
the results when we generate the synthetic data according
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Fig. 3: Results on varying cardinality, dimensionality and the size of conflict set.

to different distributions. Specifically, we present the results
when the attributes are generated following Zipf distri-
bution and the capacities are generated following Normal
distribution. We observe that the general patterns of data
generated by different distributions are similar in every as-
pect. It indicates that we do not lose generality by studying
the other experiments on data generated uniformly.

We also study the results when the attribute values
are generated following Uniform, Normal and Zipf distri-
butions and the capacity values are generated following
Uniform and Normal distributions. The results have similar
trending patterns, and we do not present them for brevity.

Real dataset. The last column of Fig. 4 shows the results
on real dataset (Auckland) when the capacity values are
generated following Uniform distribution. Notice that the
results on real dataset have similar patterns to those of
the synthetic data. Similar patterns are observed on the
other two real datasets and when the capacity values are
generated following Normal distribution, and we omit the
results due to limited space.

Scalability. MinCostFlow-GEACC is not efficient
enough according to our previous experiment results. Thus,
we study the scalability of Greedy-GEACC in this part.
The results are shown in Fig. 5a and 5b. Specifically, we
set |V | = 100, 200, 500, 1000 respectively, and vary the size
of |U |. Since |U | is relatively large, we set max cv to 200.
The other parameters are set to default. We observe that the
memory cost of Greedy-GEACC grows linearly with the size
of data and is relatively small subtracting those consumed
by input data. Also, the time cost of Greedy-GEACC grows

nearly linearly with the size of data. The results show that
Greedy-GEACC is scalable in both time and space.

Effectiveness of approximate solutions. We next study
the effectiveness of our approximate solutions, whose re-
sults are presented in Fig. 5c and 5d. Notice that since we
need to find the exact solutions in this part of evaluation and
Prune-GEACC is infeasible on large dataset, we set |V | = 5,
|U | = 15 and cv ∼ Uniform[1, 10]. The other parameters
are set to default. In Fig. 5c, we compare the approximated
MaxSums returned by MinCostFlow-GEACC and Greedy-
GEACC with the optimal MaxSum. We first observe that
when |CF | = ∅, MinCostFlow-GEACC returns the optimal
matching, which is reasonable. We also observe that the
MaxSums returned by Greedy-GEACC are quite close to
the optimal ones, indicating that Greedy-GEACC returns
quite good results in practice. Fig. 5d shows the running
time of different algorithms. The results indicate that the
two approximate solutions are very efficient compared with
the exact solution. Therefore, in overall, our approximate
solutions are both effective and efficient.

Effectiveness of pruning. We finally study the effective-
ness of our pruning technique, whose results are shown
in Fig. 6. In Fig. 6a, we present the averaged depth of
recursion when a pruning takes place in Prune-GEACC.
Specifically, we set cv ∈ [1, 10] and |V | = 5, |U | = 10
and |V | = 5, |U | = 15 respectively, and set the other
parameters to default. The dash lines indicate the largest
depths of recursions in the two settings, which is 50 when
|V | = 5, |U | = 10 and 75 when |V | = 5, |U | = 15. We
observe that the averaged depth pruned by Prune-GEACC
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Fig. 4: Results on varying capacity, distribution and on real dataset.
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Fig. 5: Study of scalability and effectiveness of approximate solutions.

is quite small compared with the largest depth, indicating
the effectiveness of pruning. In Fig. 6b, we present the run-
ning time of Prune-GEACC and that of exhaustive search
without pruning, with |V | = 5, |U | = 10 and cv ∈ [1, 10]. We
can observe that Prune-GEACC is much more efficient than
exhaustive search without pruning. In Fig. 6c, we present
the number of complete searches, i.e. the number of times
when the recursion reaches the largest depth possible and
finds a complete matching. We observe that the number
of complete searches of Prune-GEACC is much smaller
than that of exhaustive search without pruning, indicating
that many partial matchings are pruned by Prune-GEACC
during recursion. Finally, in Fig. 6d, we present the num-
ber of times Search-GEACC is revoked, i.e. the number of
times we enter a level of recursion. We observe again that
Prune-GEACC revokes Search-GEACC much less often. In
summary, the results in this part indicate that our pruning

technique is quite effective.
Conclusion. Greedy-GEACC and MinCostFlow-GEACC

are both efficient compared with the exact solution, and
they yield acceptable approximate results. Greedy-GEACC
outperforms MinCostFlow-GEACC in every aspect of
MaxSum, running time and memory cost. Finally, Greedy-
GEACC is effective and also scalable in both terms of time
and space in practice.

6.3 Evaluation for OnlineGEACC
We next evaluate the online algorithm OnlineGreedy-
GEACC. In particularly, we compare OnlineGreedy-GEACC
with an online baseline algorithm, OnlineRand-GEACC,
and the two offline approximate algorithms. OnlineRand-
GEACC is basically OnlineGreedy-GEACC, but instead of
picking events for a single user in a greedy way, it picks
events randomly. In other words, OnlineRand-GEACC re-
places line 5 of Algorithm 5 by visiting each v ∈ V ′ in a
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Fig. 6: Performance of Prune-GEACC against the exact solution without pruning.

random-shuffled order. Note that OnlineRand-GEACC has
the same competitive ratio with OnlineGreedy-GEACC.

Effect of cardinality. The first two columns of Fig. 7
show the results when varying |V | and |U |. Similar to offline
GEACC, we can observe that the MaxSum values increase
with increasing |V | and |U |. Particularly, we can see that
OnlineGreedy-GEACC, which performs much better than
the online baseline algorithm, is nearly as good as the
offline approximate algorithm Greedy-GEACC in terms of
MaxSum. It indicates that our online algorithm can make
quite good decisions in a dynamic environment. In Fig.
7e, we show the running time (in ms) and memory cost
(in MB) of OnlineGreedy-GEACC and OnlineRand-GEACC
when varying |V |, where the values of running time are
indicated on the left and the ones of memory cost are on
the right. We can observe that both the running time and
memory cost increase as |V | increases, which is reasonable
as more events need to be considered and stored. Fig. 7f
shows the running time and memory results when |U |
varies. One interesting observation is that the running time
decreases as |U | increases. The reason is as fewer events are
available for users who come late, it takes much less time to
arrange events for late-comers. Therefore, as |U | increases,
more users (the ones who come later) will need less time to
get processed, and the average running time per user will
decrease. Compared with OnlineRand-GEACC, we can see
that OnlineGreedy-GEACC is slightly slower since it spends
more time to visit the events in a sorted order.

Effect of dimensionality. The third column of Fig. 7
shows the results when varying d. For MaxSum, we can
observe that OnlineGreedy-GEACC is again nearly as good
as the offline approximate algorithm Greedy-GEACC. As
for running time and memory cost, we can observe that the
values increase slightly as it takes more time to calculate the
interestingness value and more space to store the attribute
values when d increases.

Effect of conflict set size. The last column of Fig. 7
present the results when varying the number of conflict-
ing event pairs. We can observe that similar to the offline
scenario, the MaxSum value of OnlineGreedy-GEACC de-
creases with increasing number of conflicting event pairs.
Again, we can see that OnlineGreedy-GEACC can compete
with the best offline approximate algorithm in terms of
MaxSum values. Particularly, we observe that the online al-
gorithms are event much better than the offline approximate
algorithm MinCostFlow-GEACC when there are a large
number of conflicting event pairs. As for running time and
memory cost, we can observe that they both increase when
there are more conflicting event pairs, which is reasonable

as when more events are conflicting, more information of
conflicting event pairs needs to be stored and it is more
difficult to find cu events that are non-conflicting with each
other and thus we need to visit more events for a user in
both online algorithms.

Effect of capacity. The results when varying cv and cu
are presented in the first two columns of Fig. 8. We can ob-
serve similar patterns of MaxSum values of OnlineGreedy-
GEACC as those of the offline algorithms. Fig. 8e shows
the running time and memory cost results when varying cv .
We can observe that the online algorithms spend more time
and memory when cv increases. This is reasonable as many
events are still available for late comers when cv is large, and
thus it still takes quite a long time to process late comers.
When cu increases, however, we can observe decreasing
running time as Fig. 8f shows. The reason is similar to that of
Fig. 7f, which is that less events are available for late comers
as cu increases and thus it takes less time to process late
comers. Note that the fluctuation of memory cost is probably
due to system performance fluctuation as the changes of
values are insignificant.

Effect of distribution. In the Fig. 8c and 8g, we show the
results when the attribute values are generated following
Zipf distribution and the capacity values are generated
following Normal distribution. We can observe that the
patterns are similar to those when the values are generated
following Uniform distribution.

Real dataset. The last column of Fig. 8 shows the
results on the Auckland dataset. We can observe that
OnlineGreedy-GEACC performs nearly as good as Greedy-
GEACC in terms of MaxSum values. As for running time
and memory, we can observe similar patterns as Fig. 7h and
8g in general.
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Fig. 9: Study of scalability of OnlineGreedy-GEACC.

Scalability. We finally study the scalability of
OnlineGreedy-GEACC in Fig. 9. For running time, we can
again observe that it decreases as |U | increases. On the
other hand, we can also see that OnlineGreedy-GEACC is
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Fig. 7: Results of OnlineGreedy-GEACC on varying cardinality, dimensionality and the size of conflict set.
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Fig. 8: Results of OnlineGreedy-GEACC on varying capacity, distribution and on real dataset.

quite fast and scalable as it takes less than 1ms to process
a user. As for memory cost, we can see that OnlineGreedy-
GEACC takes quite small memory in addition to the input
memory. The results show that OnlineGreedy-GEACC is
quite scalable in both time and memory.

Conclusion. OnlineGreedy-GEACC is quite effective,
even compared with the offline approximate algorithms
which have full information of users. Also, OnlineGreedy-
GEACC is very efficient and scalable. Finally, though
OnlineGreedy-GEACC and OnlineRand-GEACC share the
same competitive ratio, OnlineGreedy-GEACC is much bet-
ter in practice due to its greedy strategy.

7 RELATED WORK

Location and activity/event recommendation. This topic
has been studied a lot in recent years due to the rising
popularity of location-based social network (LBSN) and

EBSN [11] [12] [1] [13] [14] [15] [16] [17] [18] [19] [20] [21].
However, such works focused on user-oriented recommen-
dation. In other words, they focused on mining interests
of each user in certain items (locations/events) and made
recommendation in a single user’s view. For instance, [18]
recommended top-k recommend top-k POIs for a users
query point in a given time interval so that the weighted
sum of the spatial distance to the query point and the
temporal aggregate in the time interval is minimized. Also,
they did not consider conflicts and capacity of events/users.
Our work is distinct from them in that we support event-
participant arrangement in a globally systematic way so that
to satisfy the interests of most users and consider conflicts
and capacity of events/users. In addition, based on the
classical influence maximization problem [22], [23] studied
the problem of discovering influential event organizers in
EBSNs. Different from their work that only considered event
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organizers, our work focuses on how to make a globally
satisfactory arrangement towards both sides of event orga-
nizers and users.

Bipartite matching and its variants. Assignment on bi-
partite graph has been a hot research topic for decades.
The branch of bipartite matching problems most related
to ours is maximum weighted bipartite matching [24] [25].
However, the original problem does not consider conflicts
between nodes or capacity of nodes. Recent works [6] [26]
[27] [28] introduced capacity to nodes, but still they did not
take conflicts of nodes into consideration. Notice that with-
out the conflict constraint, the maximum weighted bipartite
matching and the stable marriage problems with/without
capacity constraints can be solved in polynomial time.
However, our problem differs from previous works since
our problem is much harder (NP-hard) due to the conflict
constraints of nodes. Furthermore, the online scenario of the
maximum weighted bipartite matching problem has also
been studied [29] [10] [30]. However, these works also do
not consider conflict constraints of nodes.

Event arrangement on EBSNs. Recently, the event ar-
rangement problem has been studied a lot [2] [3] [4] [5],
which all aim to find an arrangement among a set of users
and a set of events to maximize the total or minimum
satisfaction of users. Particularly, [2] considers interest and
social relationship of users, [3] is the conference version of
this paper, [4] considers spatio and temporal factors, and [5]
try to maximize the satisfaction of the least satisfied user.
However, all these works only consider offline scenarios.
8 CONCLUSION

In this paper, we identify a novel event-participant arrange-
ment problem called Global Event-participant Arrangement
with Conflict and Capacity (GEACC). We first analyze our
differences compared with traditional matching problems
and prove the NP-hardness of our problem. Then, we
design an exact algorithm and two approximation algo-
rithms. The exact algorithm is efficient for small datasets
by means of a pruning rule. The MinCostFlow-GEACC ap-
proximation algorithm is not scalable to large datasets, and
the Greedy-GEACC approximation algorithm runs signifi-
cantly faster than MinCostFlow-GEACC while guarantees
the same order of approximation ratio. In addition to the
offline setting, we also study the online scenario of GEACC,
called OnlineGEACC, where users arrive on the EBSN plat-
forms in an online way. We further propose a competitive-
ratio-guaranteed online algorithm for OnlineGEACC, called
OnlineGreedy-GEACC. We conduct extensive experiments
which verify the efficiency, effectiveness and scalability of
the proposed approaches.
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